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SUMMARY

The most fundamental linkages in ecosystem dynamics are trophodynamic. A trophodynamic theory
requires a framework based upon inter-organism or interparticle distance, a metric important in its own
right, and an essential component relating trophodynamics and the kinetic environment. It is typically
assumed that interparticle distances are drawn from a random distribution, even though particles are
known to be distributed in patches. Both random and patch-structure interparticle distance are analysed
using the theory of stochastic geometry. Aspects of stochastic geometry — point processes and random
closed sets (rcs) —useful for studying plankton ecology are presented. For point-process theory, the
interparticle distances, random-distribution order statistics, transitions from random to patch structures,
and second-order-moment functions are described. For Racs-theory, the volume fractions, contact
distributions, and covariance functions are given. Applications of stochastic-geometry theory relate to
nutrient flux among organisms, grazing, and coupling between turbulent flow and biological processes.
The theory shows that particles are statistically closer than implied by the literature, substantially
resolving the troublesome issues of autotroph-heterotroph nutrient exchange; that the microzone notion
can be extended by Rcs; that patch structure can substantially modify predator—prey encounter rates,
even though the number of prey is fixed; and that interparticle distances and the rRcs covariance function
provide a fundamental coupling with physical processes. In addition to contributing to the
understanding of plankton ecology, stochastic geometry is a potentially useful for improving the design of
acoustic and optical sensors.

The aggregative approach presents a dilemma. On
one hand, aggregation obscures the density-depen-
dent, population-regulation mechanisms of each
population which are critical to understanding com-

1. INTRODUCTION

Understanding variability in community metabolism
(Allee et al. 1949, p. 495) of the upper ocean
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(Longhurst & Harrison 1989; Jahnke 1990) is impor-
tant to assessing effects of global change, anthropoge-
nic substances, and resource exploitation. The study of
upper-ocean community metabolism is usually accom-
plished by aggregating taxonomic groups (e.g. phyto-
plankton, zooplankton, etc.) and then accounting for

munity-metabolism variability. On the other hand,
the study of each individual population’s density-
dependent, population-regulation phenomena is
impractical.

One resolution of this dilemma involves focusing on
how the ecosystem functions, rather than on a descrip-
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inputs and outputs of carbon (or other material). tion of the relationships among taxonomic assem-
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226 B. J. Rothschild  Stochastic geometry and plankton ecology

blages. A major component of ecosystem function
involves the integration of trophodynamics by popula-
tion dynamics and the integration of population
dynamics by community metabolism (see Rothschild
1986, pp. 218-236). The integrations imply that
major sources of community-metabolism variability
are driven by trophodynamic interactions. Although
trophodynamic interactions are fundamental and im-
portant in their own right, they also provide the basic
connection between population dynamics and the
kinetic physical environment (Rothschild & Osborn
1988). These trophodynamic interactions provide a
universal linkage among the populations in the ocean
ecosystem or community, as the interactions can be
thought of in the conventional sense of carnivory, and
also in the sense that grazers ‘predate’ upon phytop-
lankton cells; phytoplankton cells ‘predate’ upon
photons and nutrient molecules; and small hetero-
trophs ‘predate’ upon nutrient molecules.

An analysis of trophodynamics can be initiated
from a consideration of the classical population-
dynamics theory. In this theory, the interaction
between predator and prey is often thought of as some
function (see Holling 1965) of the product of predator-
and-prey abundance (i.e. f(N1Ng), where N; is the
abundance of prey, and Ny is abundance of preda-
tors). The assumptions that (i) predator and prey are
distributed randomly, and (ii) that predator—prey
encounter is independent of their relative velocity are
implicit in the classic formulation.

These assumptions of the classical approach are
only partially addressed in the literature. The factors
related to relative motion (Gerritsen & Strickler
1977), turbulent-flow enhanced relative motion
(Rothschild & Osborn 1988), and ‘diffusion’ (Davis et
al. 1991) are now well known. In contrast, although
the issues of patch structure have been known since
the 1950s (e.g. Cassie 1959), there have been only a
few serious studies of the structure of patchiness (see,
for example, Fasham 1978q, 4). If the predator and
prey are in patches, rather than randomly distributed,
the immediate effects of motion on the encounter of
predator and prey will be different. The existence of a
patch structure means that the theory of the interac-
tions among predator-and-prey organisms related to
relative motion and turbulent flow needs to be
extended to account for non-random distribution or
patch structure.

Extension of theory to account for patch structure
requires, as a first step, the description of a physical
framework for the distribution of predator-and-prey
‘particles’ in Euclidean space. A physical framework
enables (i) calculations of interparticle distance, a
statistic involving the propensity for trophodynamic
interaction; (ii) definition and comparison of various
patch structures; and (iii) specification of initial
conditions for studying effects of the physical environ-
ment, such as fluid flow, on particle distribution.

A physical framework for the probability distribu-
tion of particles in space or interparticle distances is
covered by the theory of stochastic geometry (see the
basic text by Stoyan et al. (1987); most of the theory is
reported or derived from their results). This paper

Phil. Trans. R. Soc. Lond. B (1992)

brings together aspects of the theory of stochastic
geometry that pertain to applications in plankton
ecology. The theory involves both point processes
and random closed sets (rRcs). The theoretical results
illustrate the application of point-process theory and
the potential of ras theory to plankton ecology.

The first part of the paper articulates necessary
aspects of the theory of stochastic geometry. Specifi-
cally for point-process theory, the statistical distribu-
tion of interparticle distances, random-distribution
order statistics, the transition between random and
patch structure, and second-order moments are pre-
sented. For Rcs theory, the basic summarization
statistics are given explicitly for the Boolean model
along with the notions of patch coalescence and the
integral feeding scale.

In the second part of the paper, applications of
stochastic geometry to plankton ecology are consi-
dered. In particular, the theory is applied to the
question of rates of nutrient flux as a function of
interparticle distance and the potential effects of prey
distribution on grazing. With regard to nutrient flux,
the theory indicates many interparticle distances are
smaller than those deduced from the deterministic
calculations presented in the literature, suggesting
that nutrients are exchanged at higher than diffuse
background-level rates. Rcs calculations of ‘spheres-of-
influence’ explore expectations of nutrient exchange
relative to microzones of algal cells to further extend
these conclusions. Application of stochastic geometry
to prey-patch structure illustrates how patch structure
can affect rates of predator-prey interaction even
though the number of prey is constant. For point
processes, the transition from a random distribution to
a patchy distribution of phytoplankton is demon-
strated. For Rrcs, volume fractions of prey patches,
their contact distributions and the covariance function
of interparticle distances within and between patches
are used to define probable levels of interaction at
varying patch density and size. The concept of a
feeding length scale is used to define distances of prey
from a predator.

The third part of the paper illustrates the role of
stochastic geometry in the coupling between tropho-
dynamics and physical forcing and sets the stage for
deriving the statistical distribution of turbulence-
induced particle velocity for non-random statistical
distributions of particles.

2. STOCHASTIC GEOMETRY

The study of the particulate foundations of commu-
nity-metabolism variability begins by considering the
living or otherwise bioactive particles of the upper
ocean as a set of spatially stochastic points. Each point
is a locus of biodynamic transformation: phytoplank-
ton cells transform photons and nutrient molecules
into biomass, copepods ‘destroy’ and then convert
phytoplankton cells into copepod biomass, catabolites,
pellets, etc.

The intensity of the transformational process is
driven by trophic transactions of particle-particle
interactions. In turn, the intensity of particle-particle
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interaction is a function of interparticle distance.
Interparticle distance is a function of particle distribu-
tion. Particle distribution and the metabolic function
partition N(n), can be written

N = Y=, (1)

J=1

¥ = {X; 6,(X)},

i U\ A

where X; is the three-dimensional stochastic position of
the :=1, . . ., N particles, §;,(X;) is the jth metabolic
function j=1, . . ., M of the ith particle, and #; is the
number of particles having the jth metabolic function.

There are many possible classifications of ;. These
classifications can be specific for taxa, size, location,
etc. One simplified classification of metabolic function
might be j=1, micro-autotroph; j=2, micro-hetero-
troph; j=3, large autotroph; j=4, large grazer; j=5,
predator.

The geometry implied by equation (1) can be studies
via both point-process and rcs theory. Section 1
elaborates upon the theory of random distributions,
§ 2 describes patch structure in terms of the mixed
Poisson-point process and § 3 outlines essential ele-
ments of rcs theory.

(a) The random model

The random or Poisson probability distribution
implies that the probability distribution function of the
distance to the nearest neighbour (see, for example,
Pielou 1977) is

Dy (r) = 1 — exp( — $Anr?), (2)

where A is the mean density of particles in three-
dimensional space and r is the nearest-neighbour
distance between particles. The derivative of equation
(2) yields the probability density function

D} (r) = 4xnr? exp( — $Anr?), (3)

which enables calculation of the mean nearest-neigh-
bour distance (NND):

7= 4-/\71[ r® exp( — #Arr®) dr. (4)
0
Integration of equation (4)1 yields the NND
7= 055071, ()

It is important to recognize that 7, is an average
value. This means that when 7 is used to appraise
interactions among particles, roughly half of the
interactions will be based upon distances that are less
than 7, and half the interactions will be based on
distances greater than 7.

Distances other than the mean distance are impor-
tant. As an example, consider the minimum mean
distance to the nearest neighbour, MnxND. The theory
of order statistics is used to compute the MNND. N
independent NNDs are measured and ranked from
smallest to largest to obtain Ry, Ry, . . ., Ry. Instead of

t Integration of equation (4) and equation (8) involves integration
of a gamma function. Solutions are not available in simple tables.
The appropriate formula is

o
jx"’e"“’" dx = (l/na(m+l)/n)r‘[(m + ])/"]
0

Phil. Trans. R. Soc. Lond. B (1992)

7, the mean distance to the nearest neighbour, we are
now interested in 7*, the mean minimum distance to
the nearest neighbour. The mean of the minimum of
all R; observations, R; (as distinct from the distribu-
tion of the random variable R) is obtained from the
general formula for the probability density function
for the minimum value of order statistics

Di(n) = n[1 — Dg(r)]"~ ' Di(r), (6)

using equation (2) and equation (3) in equation (6)
we have

Dg(r) = 4ndnry exp( — $nAnr®). (7)
Calculating the mean from equation (7)

7* = ndn | 7° exp( — 4 nAnr®)dr. (8)
0

The integral of equation (8) is
7 =0.55n" 5175, (9)

In other words, as n increases, the mean MNND
decreases. We are led to the conclusion that if we are
interested in average distances then 7 is the appro-
priate statistic, but if we are interested in how close
distances might be, given n, then 7* is appropriate.
Inasmuch as there are always very many particles,
and many independent distances, some interparticle
distances can be made to be arbitrarily small.

(b) Patch models

There are several classes of patch-structure models
(see, for example, Fasham 19784, b). It has been
shown, however, that empirical data on spatial distri-
bution alone are not sufficient to identify underlying
patch-structuring mechanisms (Pielou 1977). The
alternative, identifying a class of patch-structure
models based on first principles is equally problematic,
because the first principles are not yet well under-
stood. Nevertheless, much of the flavour of the
patch-structure problem can be gleaned from simple
examples. As an example, consider two different
classes of patch models, a point-process mixed-Poisson
model and a Rcs model. These examples enable quali-
tative appraisal of the nature of patchiness, pending a
more detailed study of mechanisms.

(i) The transition from random lo patch structure

The mixed Poisson distribution is a patch-structure
model containing as a special case, the random, non-
patch structure, Poisson distribution. The mixed-
Poisson distribution is a mixture of a low-density
Poisson parameter A; and a high-density Poisson
parameter, Ay (i.e. A; <Ag). Thus A2 can be thought of
as an intrapatch density whereas A; can be thought of
as an interpatch density. Thus the mixed-Poisson
distribution does not generate patches per se but
rather point-wise, independent, high and low densi-
ties. The mixing parameter is v so Ay is specified to
occur with probability (1 —v) and Ay with probability
v (for a detailed analysis of this process in connection
with the biological functional response, see Rothschild
(1991)). The random special case is obtained by
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setting A; =2Ag. Also, as v approaches zero or 1, the
mixed-Poisson distribution approaches the random or
Poisson distribution.

The mean of the process is

X= (1 =) + . (10)
The nND distribution function is
D(r) =X "[A (1 — o) (1 — e~ o)

+ A(1 — e ], (11)

where @w=37. The probability density function de-
rived from equation (11), is

D' (r) = 3ahwre M 4 3BAqwre 2,
a=3"N(1—v), B=1""M. (12

Accordingly the mean NND is
7= SCOI [OC)tlfs e—/\lwﬁ + [Mz’zei/\zwra]dr,
0
= 055X (1 — )% 4+ 023%]. (13)

The reduced-second-order moment function (RSOMF)
or the ratio between the number of particles a distance
less than 7 and the overall mean-density A is

X(1—v)+ 2], !
K(T) = [m:l gﬂf?]. (14)

Put another way, the product of the mean density X
and the rsoMF gives the expected number of particles,
a distance less than 7.

If distributions are Poisson or random, then all of
the information on the distribution is contained in the
first moment or the mean in the sense that the mean
and variance are equal. If, however, distributions are
patchy, then the second-order properties of the distri-
bution need to be considered. To emphasize this
point, consider that in a patchy distribution, in
contrast to a random distribution, knowing the over-
all mean, X, does not imply unique value for 7, the
NND.

(i1} Random closed sels (Rcs)

The theory of random closed sets can be used to
take a different approach to spatial-patch distribu-
tion.

A Rrcs is defined as

E:(El+x1)u(52+x2)u...U(EN+xN), (15)

where x; is the position in 3-dimensional Euclidean
space of the ith rRcs and &; is the rcs associated with x;.
The x;s are called the ‘germs’ of the process while a
typical &;, & is called a ‘primary grain’ (note that &
is not one of the ). If ¢ = {x1,xs, . . .} is a statistically
stationary Poisson process and if the primary grains
can be considered as closed sets, then & is called a
Boolean model. The first and second-order properties
of the Boolean model are well known.

For our applications of rcs theory we consider the
primary grain to be a sphere with radius r. The radius
of the sphere is taken as a random variable. We might
think of each random sphere as a collection of
particles enclosed by the sphere perimeter. The parti-

Phil. Trans. R. Soc. Lond. B (1992)

cles inside the spheres have equal density, or some
minimum density, or densities which are functions of
the sphere radius. The spheres can be thought of as
‘spheres of influence’.

Given that the germs are randomly distributed with
intensity A and that the primary grain is a sphere with
normally distributed radius N(u,0%), and hence third
moment, 3uo?+ u?, we can examine (i) the volume
fraction; (ii) the parameter of the chord length
distribution; (iii) the contact distribution, and (iv) the
covariance function. We observe here that the normal
distribution is used for heuristic purposes, technically
having no lower bound, its replacement by a gamma
distribution (for example) would be more rigorous. In
addition, very large variances mimicking larger-scale
and more complex patch structure could be more
comfortably accommodated with the gamma distribu-
tion.

The volume fraction of the percentage of the volume
occupied by E with the parameter set Z(A,u,0?) is

p=1 —exp(—%)\r:(3,u0’2+,u3)), (16)

where A is the intensity of the ‘germs’ and (3u0®+ )
is the third moment associated with the normally
distributed radius of the primary grain. Inspection of
equation (16) reveals that an increase in any of the
parameters increases the volume fraction.

The volume-fraction statistic p requires careful
interpretation. When p is small there is only a small
chance of overlap in the primary grains. However, as
p becomes large the chance of overlap increases. So the
Boolean model really represents two patch modalities:
(i) for small p, the patchiness results from confining
particles to spheres; (ii) for large p, patchiness is
complex in the sense that patchiness results from
confining particles to spheres and from the intersec-
tion of spheres where the densities of particles are at
least doubled.

A ‘mean free’ path among the spheres can be
deduced. The chord lengths between spheres is expo-
nentially distributed with parameter

L=)rp. (17)

This is the parameter of the familiar waiting-time
distribution and enables modeling interactions among
the particles as a stochastic process. In particular
equation (17) has important applications in reduced-
dimensionality problems. One example involves a
large phytoplankton cell sinking through a three-
dimensional volume. Another involves the penetration
of a light beam through the volume (having appli-
cability iz situ or in remote sensing).
The spherical contact distribution is given as

H(r) =1 — exp( — Anr(4(c? + u?)
+ dur + %), (18)

This is the distance to the nearest sphere from a
randomly chosen point outside a sphere. Accordingly
H(r) gives a measure of one-dimensional ‘void space’
from a randomly selected three-dimensional vantage
point, not in a sphere of influence.

Finally, the covariance function specifies the distri-
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bution of distances between points (as distinct from
germs) within and among spheres.

Clr=2 —1+ (1 —p)?

D [ A Fr (19)
XP| AT 4x 162 )P

r/2
where

dF,(x) = (1) /2m)exp— [(x—)*20”], (20)

because r is N(u,02).

The covariance function characterizes the spacing
among germs and primary grains. Note that the
maximum value of the covariance function is p and
the minimum value is asymptotically % In a sense the
covariance measures the rapidity with respect to r that
the covariance declines.

The covariance function can be used to define an
integral feeding scale

F = Ojoc*(r)dr. (1)

The scale # might be perceived by a predator feeding
among prey with specified germ and typical grain
distributions. & is a natural coupling with feeding
biology in the context of the theory of homogenous
and isotropic turbulence.

The theory of random closed sets easily lends itself
to considering certain aspects of the intersections
among Rcs. For example, consider the joint volume
fractions and covariance functions

N N

P=1lp  C0)=T]GCH. (22)
i=1 i=1

When N=2; i=1 could refer to a predator; and i=2,

to a prey. Larger N could represent various scales of

patchiness. Formulations such as equation (22) permit

considerable flexibility.

3. APPLICATIONS TO PLANKTON ECOLOGY

This section gives applications of stochastic geometry
to the study of plankton ecology, particularly the
molecular-nutrient flux and grazing. Use of actual
data in developing applications is difficult because (i)
knowledge of physiological anabolic-catabolic micro-
plankton kinetics is limited; (ii) most reports pertinent
to particel-particle interactions are based on a variety
of inconsistent units and measurement approaches
(e.g. units of carbon, parts-per-million of particles,
chlorophyll, numbers of prey-per-unit-volume, and
behavioral responses), rather than actual particle
counts; and finally (iii) in rare cases where particle
counts are given, only first-order properties are
reported.

(a) Rates of inter-organism nutrient flux

Rates of nutrient flux among organisms are a
function of the diffusive properties of nutrient mole-
cules and the distance between donor and acceptor
cells (or donor organisms and acceptor cells). The
interparticle distance can be studied in terms of point

Phil. Trans. R. Soc. Lond. B (1992)

processes and Rcs. The first example, using point
processes shows that contrary to the literature, many
particles are statistically much closer to one another
than reported. This is because the reported distances
are based upon mean distances; the mean distance
both under- and over-estimate the actual distance of
most particles. A very large number of particles are at
distances less than the mean distance. The close
proximity of donors and acceptors implies a common-
place nutrient exchange between donor and acceptor
cells at greater than diffuse background levels. Sto-
chastic geometry is used to make precise the notion of
the probability distribution of interparticle distance.
The second example uses Rcs to develop a geometric
foundation for the study of microzones or relatively
high concentrations of nutrients surrounding a
nutrient donor.

(1) The proximity of particles and point-theory process

An outstanding problem in the study of molecular-
nutrient flux is the rate of transfer of nutrient molecules
from donors to acceptors (nutrient donors range in
size from microbial to the largest organisms: nutrient
acceptors are autotrophs, 1-50 pm and heterotrophs,
less than 5 pm). This problem (originally configured in
terms of ‘large’ donors and ‘small’ acceptors) was
recently reviewed (Jackson 1987, Mann & Lazier
1991; see also, Goldman 1988, Le Feévre & Frontier
1988). There are two contradictory, and unresolved
points of view. The first point of view is that nutrient
exchange occurs at a high rate to sustain observed
production. The second point of view is that the mean
distance between donor and acceptor particles is so
‘large’ that, nutrients reach a diffuse background level
before they can be exchanged at a relatively high flux
rate.

The interpretive difficulty arises because the dis-
tances between cells reported in the literature are
essentially deterministic (and, in some instances,
incorrect mathematically). However, because the
actual distance between cells is a chance variable, it
can be shown that many cells are much closer to one
another than the deterministic distance. So on a
conservative geometric basis the transfer of nutrients
at relative high rates appears quite plausible.

To see this, consider the spatial distribution of
picoplankton relative to a random point occupied by
an autotroph. Assuming that there are 1.5x 108
picoplankton per cubic centimetre; that each pico-
plankton has a radius of 1 pm; and that the autotroph
has a radius of 10 pm, the NND among the picoplank-
ton is 48 pm. This random mean distance is conserva-
tive (under patch structure, the particle would be
even closer (cf. equations 5 and 13)).

This means that the average distance between cell
walls is 37 pm. The probability distribution function
corresponding to these specifications is shown in figure
1. Roughly half the' pico-plankton cells are within
37 um of the autotroph cell wall. Taking expectations,
p=0.06%, of the nearest-neighbour distances are so
close as 10pum distant from the autotroph. This
amounts to 90000 nearest-neighbour distances.
Examination of the rRsoMF shows that on the average
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1.0~ emmmommee
08 1.5 X 10° cells —,-"" .-~
/, -
P
06| 4

probability

picoplankton
cell

distance / pm

Figure 1. Probability distribution function for NND given a
Poisson distribution and cell densities of 1 x 10¢ and 1.5 x 108
cells per cubic centimetre. A phytoplankton cell and a
picoplanktonic heterotroph are superimposed at what might
be a typical distance. The cross marks the mean NnD for
1.5 x 108 random particle distance.

six cells are in a shell having inside diameter of about
50 pm and an outside diameter of about 100 pm
(figure 2). This is of interest because while on one
hand there are on the average six cells within 100 pm
of a typical cell, there are on average no cells within
50 pm. It is reasonable to expect that, of these, half
will be closer than the NND to each other and hence
could increase the local density of catabolites. On
consideration of the probability distribution of NND
and the MNND in the random case, it is likely that at
any fixed instant some autotrophs and heterotrophs
are sufficiently close to exchange or transmit metabo-
lites at concentrations in excess of background levels, a
line of reasoning further certified by the MNxND calcula-
tion.

These results apply mostly to pico- and micro-
plankton nutrient exchange, but what about large
heterotroph donors (e.g. copepods)? To consider this
situation, we observe that the major groups of plank-
ton can be classified by size and density (i.e. numbers
per unit volume). For example, large zooplankton are
about 1000 pm in diameter and occur at densities of
10~2 individuals per cubic centimetre. Large phyto-
plankton are of the order of 100 pm in diameter and
occur at densities of 100 individuals per cubic centi-

6 /]
/
(2} I/
3 7
< 4
/
e S
[ 7
£ -
5 2 s
= -
0 il :
0 20 40 60 80 100

distance / pm

Figure 2. The product of the mean density and the rRsomr for
a Poisson distribution with mean density 1.5 x 10% cells per
cubic centimetre. The rRsoMF gives the mean number of cells
within distance 7 from a particle. There are roughly six cells
in a spherical shell between 50 and 100 pm.

Phil. Trans. R. Soc. Lond. B (1992)

meter. Picoplankton are about 1 pm in diameter and
occur at densities of 10° individuals per cubic centi-
metre.

The densities enable computing the NND (equation
5) and MNND (equation 9) for each major group. These
are plotted in figure 3. It will be noted that picoplank-
ton have an interparticle distance of only roughly
10-3 cm, whereas the diameter of a large zooplankton
is about 107! cm. Therefore the large zooplankton
and picoplankton are in ‘continual contact’ (see also
Rothschild 1988).

The proximity of large zooplankton and picoplank-
ton raises two points. The first is that the relatively
large size of the zooplankton and the relatively small
interparticle distance of the picoplankton suggests that
large zooplankton could contribute nutrients to pico-
plankton at rates higher than might otherwise be
thought. In addition, the fact that zooplankton
grazers are often in very close proximity (because the
zooplankton graze on the autotrophs) to larger auto-
trophs implies that large zooplankton donate mole-
cular nutrients to larger autotrophs as well.

The entire transfer process would be even more
efficient if the zooplankton had an efficient way of
finding the phytoplankton patches. This raises the
second point which is the speculation that catabo-
lizing picoplankton provide directional guidance for
grazing zooplankton, even though the picoplankton
are too small to be ingested by larger zooplankton.
The basic idea is that phytoplankton exudates are
metabolized by picoplankton and that picoplankton
catabolites provide a more efficient directional sense to
chemotactic zooplankton regarding their orientation
toward phytoplankton patches. The phytoplankton
‘leak’ organic molecules, the molecules are ‘ingested’,
then catabolized by picoplankton, and finally the
diffused picoplankton catabolites are detected at rela-
tively high concentrations by grazer chemoreceptors,
which are almost in direct contact with the picoplank-
ton cells. In other words the picoplankton serve as
chemical ‘repeaters’ (much as in a radio transmission
system) and enable detection of the presence and

n=

10 Tk n=100

0
E 10
% » ) Picopla:r!kton
Z 107y Zooplankton D
Densities
102 AR,
Phytoplankton >~
108 ) Densities L Nn . .
10 102 10' 10* 107 10'°

number of particles per cubic centimetre

Figure 3. Nearest neighbor distance (NND) as a function of
particle density. The line corresponding to n=1 is the
conventional NND. The lines corresponding to n=100 and
n=1000 are mMNNDs for n=100 and n=1000 respectively.
Typical ranges of numerical densities (which generally do
not overlap) are shown for zooplankton, phytoplankton,
and picoplankton.
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direction of a phytoplankton patch at a greater range
than if the grazers were using only the phytoplankton
exudates for chemotactic spatial clues. The operation
of this scenario requires chemical signals at different
intensities at closely spaced chemoreceptors. If the
scenario were operable under certain conditions, the
trophodynamic coupling among different size groups
of plankton would be much greater than otherwise
thought.

(il) Microzones and Rcs theory

RCs theory can be specifically applied to the mole-
cular-nutrient, ‘sphere-of-influence’, or microzone
(Mitchell et al. 1985) around each particle. Mitchell et
al. give the radius of a microzone,

r = Q[4r=DC’ (23)

where @ is the total nutrient flux per cell, D is the
molecular diffusivity and C is threshold concentration
(they set C=0.10) above background concentration.
Using this formula, they compute that the algal-cell
poc microzone, 109, above background level, would
have a radius of ¢a. 1 mm.

As Mitchell e/ al. imply, assessments of microzone
dimensions are uncertain. In particular, there are
many alternative assumptions regarding the factors
that drive the temporal and spatial microzone volume.
These include the temporal relation between anabolite
and catabolite; input-output, and donor volume,
versus donor surface-area per unit cell volume.

Because the magnitude of the microzone radius
(both temporally and spatially) is uncertain, it can be
treated as a variable enabling the study of the volume
fraction as a function of microzone radius. The
volume fraction occupied by the spheres-of-influence
of the large autotrophs (based on a density of 400
individuals per cubic centimetre is plotted in figure 4).
If we agree that a microzone radius of 100 pm is
‘large’, then we see that even at this large volume only
2.5x 10~% of the volume is occupied by large auto-
troph microzones. On the other hand, there are a very
large number of small heterotrophs, so at a large
microzone radius of 100 pm and a concentration of
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Figure 4. Relation between volume fraction, pa, and radius
of sphere of influence for autotroph where Ax=400 cm 8,

2
and 4=} pl
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Figure 5. Relation between volume fraction py and radius of

sphere of influence for heterotroph, where Ay =1.5 x 108, and
2 _1,2
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1.5 x 10° heterotroph cells per cubic centimetre, we
expect to find (1.5x108)-(2.5x 1074 =
3.75x 10% small heterotrophs per cubic centimetre
within autotroph microzones.

The volume fraction py, and the radius of the sphere
of influence for a small heterotroph (having a density
of 1.5 10% cm~3) is plotted in figure 5. By contrast
the volume fraction increases much more rapidly by
virtue of the fact that the numerical density of small
heterotrophs is much greater than that of large
autotrophs. Placing a large autotroph in a field of
small heterotrophs leads to the statistical expectation
that interactions at higher than background levels
would be expected.

The notion of the volume fraction can be used to
estimate the volume of zones of synergy or ‘hot spots’
between particles. To give an example of these
calculations to estimate the intersection of microzones
the pool of picoplankton is divided into two groups of
0.75 x 108 cells per cubic centimetre each. The effect
of the radius of the sphere of influence on the volume
of intersection of spheres can be calculated using
equation (22). The results of the calculations are
shown in figure 6. The figure shows that the length of
the radius has to be at least 20 pm before interaction
occurs. Between a radius of 20 pm and a radius of
50 pm, roughly from 40-1009%, of the average NND, the

would

50

radius / pm

30~

20

radius / pm

Figure 6. Volume fraction occupied by overlapping spheres
of influence from two populations, each 0.75 x 108 cells per
cubic centimetre and with specified radius.
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volume occupied by catabolites from the two pools of
cells taken jointly increases from 0-10%,. The overlaps
would increase if the radii were considered to have a
variance. The crucial question regarding joint ‘hot
spots’ is whether conditions exist such microzones
have radii greater than 20 pm. On the other hand
such ‘hot spots’ almost certainly exist given the
arguments implied by equation (9), that is MNND for
various n become important.

(b) Grazing: the structure of phytoplankton
patchiness

The dynamics of grazers and the phytoplankton cells
upon which they feed depends to a considerable extent
upon grazer—phytoplankton-cell encounter rates
(Gerritsen & Strickler 1977). The study of encounter
rates has generally assumed implicitly that prey are
distributed at random relative to the predator. How-
ever, because plankton are generally distributed in a
patch structure, the randomness assumption generates
a misleading view of grazer-phytoplankton tropho-
dynamics.

To explore the effect of patch structure on grazer—
phytoplankton interactions, point-process theory can
be used to consider the transition from a random
distribution to patch structure. rcs theory can be used
to demonstrate an alternative to point-process theory
for the study of patch structure. Both branches of
theory are used to show that a fixed number or density
of phytoplankton cells can be allocated in space in a
variety of ways and that each allocation has different
consequences for the grazing and phytoplankton
populations. In other words the information regarding
spatial allocation can be as critical as the actual
abundance of phytoplankton cells.

This is a point not generally recognized in the
literature. Results of feeding experiments and observa-
tions in the field generally report only the density of
zooplankton and phytoplankton. But the encounter and
the number of phytoplankton cells ingested which are
equally important from an ecological point of view
depend to a considerable extent on the generally
unreported patch structure. Furthermore, the encoun-
ter rate depends upon feeding scales rather than on
anthropocentric sampling scales.

(1) Phytoplankton patch structure: the point-process onset of patch
Structure

The transition from random to patch structure
occurs via the transition from equation 5 to equation
13. We suppose that phytoplankton cells have intra-
patch densities (A9) ranging from 0-700 cells per cubic
centimetre and interpatch densities (1;) ranging from
0-700 cells per cubic centimetre. For demonstration
purposes, we select the parameter, v=0.75 (as v
decreases contours rotate to the vertical). The mean
overall densities and the NNDs for these combinations
are shown in figure 7. Let us focus on a single fixed
mean density, 400 cells per cubic centimetre, for
example. At the point where the intrapatch and
interpatch densities are equal to 400 cells, the distribu-
tion is random or Poisson, and the NND is roughly
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Figure 7. Contours of A and N~D for the mixed Poisson
distribution with parameter »=0.75 for various intra- and
interpatch densities. Solid line, population density (cells per
cubic centimetre); dashed line, nearest-neighbour density

(pm).

750 pm. Transiting from a random to a patch struc-
ture and constraining observations to maintain a
mean density of 400 cells per cubic centimetre the NND
drops to about 700 pm at intrapatch densities of
slightly more than 500 cells per cubic centimetre and
interpatch densities of roughly 50 cells per cubic
centimetre. The importance of this reduction in NND
needs further study. However, from a copepod’s point
of view, traveling at 720 cm h~!, it means that it
would increase its encounter rate on the average, from
about 9600 to 1029 cells per hour. Examining now the
same 400 cell population isoline in connection with
the rsomr (figure 8) shows that the RSOMF constant
parameter increases from 400 to 500 as patchiness
increases over the same range of intra- and interpatch
densities. The effect of increasing the RsoMF constant is
shown in figure 9. This shows that in a 720 cm search
sphere the random and patchy distribution would
yield populations of roughly 3 x 107 and 4 x 107 cells
respectively. In other words, particle patch structure
has increased the opportunity of contact in a fixed
radius of 720 cm search sphere by 339, bringing to
mind the question of random versus directed search on
the part of the copepod: for the copepod to really take
advantage of the increased numbers of cells in a patch
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Figure 8. Contours of X and the rRsoMF with parameter
v=0.75 for various intra and interpatch densities. Solid line,
populations density (cells per cubic centimetre); dashed line,
parameter value.
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Tigure 9. Product mean density and rsoMr showing the
increase in feeding opportunities per unit radius of search
sphere.

environment, it would have to find situations where
the nearest-neighbour distance was substantially less
than, say, 700 pm.

This further brings to mind the contrast between 7
and 7* (equation (5) and equation (9)). To put the
question more precisely, do copepods capitalize on
MnnDs and if they do, then is n>1 a measurable
function of the physical environment?

(i1) The rRcs model

The rcs view of phytoplankton patch structure
accommodates different information than the point-
process approach. In the point-process approach, it is
necessary to specify only the nature of the process (e.g.
a particular cluster process) and its parameter values.
The rcs theory requires specification of the germ
probability distribution, the form of the primary
grain, the statistical distribution of primary grain
dimensions, and the way that the plankton particles
are allocated within the bounds of the primary grain.
These statistics enable calculation of the volume
fraction, contact distribution, covariances, integral
scales, etc.

The simplest rcs patch structure is the Boolean
spherical model where the germs are randomly distri-
buted and the primary grain is a sphere with a
random radius. As an example, consider figure 10
which shows the volume fraction for the Boolean
spherical model as a function of patch density, and
patch radius. Because of the Boolean assumption,
patch density immediately gives the NND of patch
centres whereas the patch volume is determined from
its radius. Figure 10 shows the inter-relationships in an
allocation scheme of patch density; patch radius and
volume fraction. We can also see that when the
volume fraction is low and the primary-grain radius is
low then there is an on the average separation of
spheres, but when these variables are high the spheres
coalesce.

The property of grain coalescence that occurs at
high volume fractions (e.g. ca. p>0.2) and high 73:)
ratios is a particularly important research topic. This
is because a volume containing some coalesced
patches or grains has ceteris partbus a much different
propensity for biodynamic transformation than a
volume containing no coalescence. In a sense, the
onset of coalescence is analogous to changes in

Phil. Trans. R. Soc. Lond. B (1992)

NND /m
0.12 0.09 0.08 0.07 0.07 0.06 0.06 0.06 0.06
T T T T T T T T
| L\e)
g 03F | 1 8
~ 1 >
g b {006 2
5 02l | £
2 0.21l \ 1003 6
o E kS
Sk oo oot S
2 011 e _______j0004 E
2 .01 5
= N 0.0005 Q
S0 T T T T T e e e e e ] >
0 L | L 1 1 1 1 L
0 200 400 600 800

density of patches per cubic metre

Figure 10. Boolean model, volume fraction as a function of
patch radius or volume and patch density or interpatch
center NND.

deterministic systems at bifurcation points or bifurca-
tion surfaces. The difference is that in deterministic
systems, the bifurcation point or surface is fixed. By
contrast, in the stochastic system, the onset of coales-
cence is a chance variable.

What is remarkable, is that whereas the volume
fraction measures the propensity for coalescence in
terms of the patches or grains, the contact distribution
and the covariance function relate to the particle—
particle relationships of the points within the patches
or grains, whether or not one or more coalesced
spheres are present. For example, given some specifi-
cation of the Boolean model, the contact distribution
gives an approximate (the approximation relates to
the stochastic distance from random point to a particle
which is a function of the density of the points within
the sphere) probability distribution of distance of a
random grazing copepod from the nearest patch. Or,
given some randomly placed particle within a patch,
the covariance function approximates the probability
distribution of the distance from the particle to any
other particle in the system, whether it is in the same
patch, or a different patch, whether or not coalescence
has occurred. These interpretations emphasize the
need to cautiously interpret the rRcs model when the
primary grains have a low density of particles.

Thus the volume fraction, the contact distribution,
and the covariance function can be seen to have
important biological interpretations which can be
extended further by considering the integral feeding
length scale, #. The feeding length scale & may be
the only example of a true biological scale inasmuch
as various scales reported in the literature have no
demonstrated biological function: they are simply
sampling scales and accordingly anthropocentric in
nature. The feeding length scale sets the length scale
for patch size from the perspective of the randomly
placed copepod and provides a direct link with the
effect of small-scale turbulence on the feeding process.

As an example, a fixed number of phytoplankton
cells, 200 x 10° cells per cubic metre (i.e. 200 cells per
cubic centimetre) is allocated to different Boolean
patch structures to show that fixed densities of cells
can represent different grazing opportunities (see
table 1). The cells are allocated to 50 and 500 patches
per cubic metre maintaining intra-patch densities of
400 and 800 cells per cubic centimetre. For this
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Table 1. Statistics representing an example of fixed allocations of 200 x 108 cells per cubic metre to 50 and 500 patches with 400

and 800 cells per patch

between
volume within patch
cells of patch patch centre patch Integral
cells per per cubic patches patch radius NND NND s.d. volume scale
cubic centimetre per cubic fraction
metre per patch metre cm® cm cm cm cm (p) cm
400 { 50 10000 13.365 0.0746 14.93 6.5 0.55 34
200 % 106 500 1000 6.2035 0.0746 6.93 3.0 0.55 30
800 { 50 5000 10.608 0.0592 14.93 5.5 0.39 18
500 500 4.923 0.0592 6.93 2.5 0.37 15
particular example the total number of cells 200 x 108 1.0r
was divided by either 50 or 500 giving the numberof | | =770 50 patches; 400/patch
cells per patch: 4 x 10° or 0.4 x 10, respectively. The 0.8 I :gigfé:::igg%:f;;‘h
number of cells per patch was then divided by the | | -=--- 500 patches; 800/patch
patch density (400 or 800 cells per cubic centimetre) 06-
to obtain the patch volume. The patch radius was = e
then determined directly from the volume. To obtain © 04k e
the covariance function it is necessary to assume some R N
positive value for the radius variance, we let the o2k \\\:“~~.
standard derivation equal approximately one half the TN Inmumee
mean radius. 0.0 . ' [
Table 1 shows that if the within-patch density is 0.001 0.01 0.1 1.0

fixed, then the within-patch NND and the volume
fraction is constant. On the other hand, if the number
of patches per-unit volume is fixed, then only the
distance between the patches remains constant. Both
the volume fraction and the integral scale vary over
all four cases. Note, however, that because in this
example the ratios r3:X are large the propensity for
coalescence is also large (compare the patch NND with
the patch radius).

To take a different tack the volume fraction could
have been restricted to values smaller than p=0.1 (cf.
figure 10). The 200 x 106 cells per cubic metre could
have been maintained at patch densities 50 patches
per cubic metre. This means that we have all
concentrations of 0.8 x 10¥ cells per cubic metre or
0.8 x 10* cells per cubic centimetre within each patch
a seemingly high concentration.

The constraints reflect that ‘reasonable’ cell densi-
ties result in large spheres, large volume fractions, and
a high degree of coalescence and a complex patch
structure. On the other hand, if we fix the size of the
patch at a small value relative to the density of
patches, we have a small volume fraction, a low
degree of coalescence, a simple structure, but a
seemingly high concentration of cells. It is not known
which case actually obtains in nature, because feed-
ing-scale patch structure is not generally reported.

The covariance functions based on table 1 are
plotted for each of the four cases in figure 11. Note,
that as pointed out in the theoretical section, the
upper and lower bounds of the covariance function
are the volume fraction and the volume-fraction
squared, respectively. Inasmuch as the volume frac-
tions depend only on the density of patches and their
radius, and the variance and the volume of patches is
held constant for 400 cells per cubic centimetre and
800 cells per cubic centimetre cases, the upper and

Phil. Trans. R. Soc. Lond. B (1992)

r/m
Figure 11. Covariance function as a function of distance
from patch centre for the cases indicated in table 1. Note
that the Kolmogorov length scale can be superimposed on

the x-axis. Its position would depend upon the magnitude
of .

lower bounds for each of these cases is the same.
However, in both instances the many smaller patches
result in a much more rapid decline in the covariance
function.

The contact distribution for the four cases in table 1
is shown in figure 12. The contact distribution can be
thought of in terms of the search opportunities of a
grazing copepod. In this case the results are asym-
metrical with those for the covariance function in the
sense that there is more similarity within the number

H(r)

/ ;
; ;
/ ;
/ ;
7 K4
/ by ——

s / ---------- 50 patches; 400/patch
----- 500 patches; 400/patch
————— 50 patches; 800/patch
———— 500 patches; 800/patch

0.0lzzzzZ2m"" | I
0.001 0.01 0.1 1.0

r/m

Figure 12. The ‘horizon’ for a copepod not in a patch
searching for a patch. H(r) is the probability of the nearest
patch being at a distance 7. Even though the overall density
of phytoplankton cells is fixed, allocations to more patches
result in higher values of H(r). Given the particular
allocation algorithm higher density patches are smaller and
hence more distant.
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of patches per unit volume then between the number
of patches per unit volume.

Even though the overall density of phytoplankton
cells is fixed, allocations to 500 rather than 50 patches
per cubic metre result in higher values of H(r) and
hence lower values of 7,. Given the particles allocation
scheme, high-density patches are smaller and hence
more distant.

The significance of these statistics is apparent from
two points of view. From one point of view they show
how fixed densities of particles can result in very
different feeding conditions. From a second point of
view they set the stage for demonstrating how patch
structure is related to physical processes.

4. COUPLING WITH PHYSICAL PROCESSES

The effects of turbulent flow on particles relates to
both the density of particles and their relative motion.
The complex inter-relationships (cf. Davis et al. 1991,
Costello et al. 1990; Marrasé et al. 1990; Sundby &
Fossum 1990) depend upon (i) how the particles are
distributed in the flow field; (ii) the specifics of the
flow; and (ii1) the swimming or other behaviour of the
particle. From the point of view of the relative motion
of particles, both point-process and rcs theory estab-
lish initial conditions and a metric for summarizing
information on particle trajectories. In the theory of
homogenous-and-isotropic turbulence, the relative
uncorrelated velocity of two particles depends upon
the turbulent-energy dissipation rate and the distance
between the particles. For patch-structure cases,
point-process theory gives the probability distribution
of the distance between particles under a variety of
patch models. It also gives the second-order properties
of the distribution. The rcs theory gives the probabi-
lity distribution of distance from outside a patch, the
contact distribution; and from inside a patch, the
covariance function.

The problem is now converted to a ‘function-of-
random-variables problem’ where the probability dis-
tribution of the relative velocity of particles depends
more generally upon (i) the distribution of interpar-
ticle distances in the point-process sense and (ii) or the
contact distribution or the covariance function in the
RGS theory sense. This sets the stage for coupling
‘basin-scale’ wind events (see, for example, Dickson et
al. 1988; Rothschild & Osborn 1988; Oakey & Elliott
1982; Sundby & Fossum 1990) with microscale feed-
ing events. Because wind events can operate over a
very large area, the wind variations integrate
encounter rates over a large area.

The interesting but very important nuance is that
the above argument assumes that the particles are
immotile: that is they are always at some physical
equilibrium (apart from a Stokes-equation considera-
tions). A comparison of the spatial geometry of motile
particles with the spatial geometry of similar immotile
particles then reflects a minimum bound on various
energetics required by these organisms for their sur-
vival. As this bound must change with physical
forcing, another critical link between ecosystem dyna-
mics and physics is established.

Phil. Trans. R. Soc. Lond. B (1992)

From the point of view of diffusive-dispersive
processes the picture seems to be not as clear because
dispersive processes can either enhance or reduce the
density of organisms depending upon the nature of the
process and the initial distribution of organisms. We
can infer that the well-known conditions for patch
maintenance are such that the length-scale geometry
of a patch must be greater than a function of the
diffusion coefficient, and the birth and death rate of
the particles in the patch, namely

L>¢(w), a=(D/p-20y (24)

where L is the patch dimension, D is the diffusion
coefficient associated with the patch and f and ¢ are
birth and death rates respectively. This means that if
birth and death rates do not change, but diffusion
increases then the critical dimensions of the patch
would need to increase. Similarly, a decrease in the
diffusion constant implies that smaller patches could
be maintained. Further, as birth rates increased over
death rates larger patches could be maintained. This
of course requires some timescale for L and the birth
and death rates such that equation 24 is meaningful.
It can, however, be seen immediately that all of the
nuances of rRcs apply to L.

Finally, the theory of rRcs can be used to simplify
our thinking on the turbulent flow problem. The
difficulty to be overcome is that the motion of particles
that are close together is coupled. The motion of
particles that are distant is uncorrelated. The point at
which the motion becomes decorrelated is a function
of e&. We therefore establish a different type of
microzone about each particle, the radius of which is a
function of &. We can then study the relatively easy
problem of uncorrelated motion among particles with
interparticle distances at least as great as the specified
microzone radius and establish in this context biologi-
cal-physical consequences of the volume fraction, the
contact distribution, and the covariance function.

5. CONCLUSIONS

This paper has approached understanding community
metabolism at the fundamental level of particle-
particle interactions. This approach has illustrated the
importance of characterizing the spatial structure of
interacting particles in evaluating the significance of
average densities. The statistics of stochastic geometry
such as spheres of influence and coalescence are
directly relatable to biological features of planktonic
predator—prey systems. However, much further work
needs to be done.

Setting in motion the geometric representation of
particles will be a difficult task. How this might be
approached can be seen by considering the distribu-
tion of particle velocity with respect to homogeneous
and isotropic turbulence where patch structure is
taken into account. Complexities for future considera-
tion involve the effects of turbulent flow on particle
density (e.g. diffusion) and exploring the alternative
circumstances leading to increases or decreases in
particle density. An additional important aspect is the
motility of particles. Particles that are motile and not
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in physical equilibrium have expended metabolic
energy to reach or maintain their non-equilibrium
point. This will affect interpretation of interparticle
distances as a fabric for predator-prey interactions.

A still complex issue is how to combine species into
meaningful groups for the description of community
metabolism. While taxonomic (or size-based) group-
ings are attractive, owing to their simplicity, grouping
community members by metabolic-variability charac-
teristics may be more useful. If the goal of upper-ocean
studies is to understand variability in community
metabolism, then consideration of interparticle dis-
tances, however particles are classified, will lend
insights into the aspects of spatial structure which both
integrates and differentiates influences of physical and
biological processes.

The present analysis of interparticle nutrient flux
and grazing suggest that many plankters are closer
spatially than generally thought. This analysis is
conservative in that a static geometric approach was
taken. This, however, strengthens the argument that
spatial distributions are key, turbulent-flow affected
factors governing nutrient flux among organisms.
Both point-processes and Rrcs theory lends itself to
studying the geometry of proximity. Point-process
theory establishes the distinction between no-informa-
tion random search where 7 is important and non-
random search where 7* is important. rRcs theory
provides a useful statistical framework of the study of
microzones and their kinetics.

Concerning grazing, the effects of different spatial
distributions parameterized by the same mean prey
density, can be substantial. The transition from
random-particle distribution to random-patch struc-
ture in the point-process case, from both order
statistics and RsomF, quantitatively demonstrates the
potential importance of non-random search patterns.
This makes the speculation about the role of micro-
plankton as chemical ‘repeaters’ that guide grazers to
patches of larger autotrophs a fascinating issue for
further modelling.

An important question involves the significance of
any theoretical result. Is a one-percent or a thirty-
percent change in encounter rate important? The
answer depends upon the particular circumstances. It
can be said, however, from the study of nonlinear
population dynamics, that even the slightest change
in a trophodynamic parameter (in the community
matrix, for example) can result in substantial qualita-
tive and quantitative differences in population trajec-
tories (see also Beyer 1989).

The res theory lends considerable new flexibility to
the study of grazing in the upper ocean. Patch
structure in the context of rcs, the onset of coales-
cence, and effects of physical structure on feeding
scales reflect components of biodynamic flux of the
upper ocean. Although all of these aspects are func-
tions of the effects of interparticle distance on tropho-
dynamics, they relate as well to population dynamics
and to community metabolism. Thus, in undertaking
the particulate description of community metabolism,
the modes of required measurement shift to the
measurement of particle numbers, and interparticle

Phil. Trans. R. Soc. Lond. B (1992)

distances establishing a yet additional role of stochas-
tic geometry, the development of statistical require-
ments for the development of acoustic and optic
Sensors.

Discussions with D. Capone were helpful in thinking about
microplankton ecology. D. S. Robson read the paper and
provided helpful insights. Huaxing Li computed the covari-
ance and contact distribution functions. Comments from
D. H. Cushing, J. S. Steele and M. J. Fasham were helpful
toward completing the paper.
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